Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(26): 2116-2129, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156827

RESUMO

Viperin is a member of the radical S-adenosylmethionine superfamily and has been shown to restrict the replication of a wide range of RNA and DNA viruses. We recently demonstrated that human viperin (HsVip) catalyzes the conversion of CTP to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP or ddh-synthase), which acts as a chain terminator for virally encoded RNA-dependent RNA polymerases from several flaviviruses. Viperin homologues also exist in non-chordate eukaryotes (e.g., Cnidaria and Mollusca), numerous fungi, and members of the archaeal and eubacterial domains. Recently, it was reported that non-chordate and non-eukaryotic viperin-like homologues are also ddh-synthases and generate a diverse range of ddhNTPs, including the newly discovered ddhUTP and ddhGTP. Herein, we expand on the catalytic mechanism of mammalian, fungal, bacterial, and archaeal viperin-like enzymes with a combination of X-ray crystallography and enzymology. We demonstrate that, like mammalian viperins, these recently discovered viperin-like enzymes operate through the same mechanism and can be classified as ddh-synthases. Furthermore, we define the unique chemical and physical determinants supporting ddh-synthase activity and nucleotide selectivity, including the crystallographic characterization of a fungal viperin-like enzyme that utilizes UTP as a substrate and a cnidaria viperin-like enzyme that utilizes CTP as a substrate. Together, these results support the evolutionary conservation of the ddh-synthase activity and its broad phylogenetic role in innate antiviral immunity.


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Sequência de Aminoácidos , Animais , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Biocatálise , Proteínas Fúngicas/metabolismo , Humanos , Hypocrea/enzimologia , Methanomicrobiaceae/enzimologia , Camundongos , Nucleotídeos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ligação Proteica , Especificidade por Substrato
2.
Annu Rev Virol ; 7(1): 421-446, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32603630

RESUMO

Most cells respond to viral infections by activating innate immune pathways that lead to the induction of antiviral restriction factors. One such factor, viperin, was discovered almost two decades ago based on its induction during viral infection. Since then, viperin has been shown to possess activity against numerous viruses via multiple proposed mechanisms. Most recently, however, viperin was demonstrated to catalyze the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously unknown ribonucleotide. Incorporation of ddhCTP causes premature termination of RNA synthesis by the RNA-dependent RNA polymerase of some viruses. To date, production of ddhCTP by viperin represents the only activity of viperin that links its enzymatic activity directly to an antiviral mechanism in human cells. This review examines the multiple antiviral mechanisms and biological functions attributed to viperin.


Assuntos
Citidina Trifosfato/metabolismo , Proteínas/genética , Proteínas/metabolismo , Viroses/virologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/química , RNA Polimerase Dependente de RNA/metabolismo
3.
Nature ; 583(7814): E15, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32541969

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nature ; 562(7725): E3, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980769

RESUMO

Change history: In the HTML version of this Letter, Extended Data Fig. 4 incorrectly corresponded to Fig. 4 (the PDF version of the figure was correct). This has been corrected online.

5.
Nature ; 558(7711): 610-614, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925952

RESUMO

Viral infections continue to represent major challenges to public health, and an enhanced mechanistic understanding of the processes that contribute to viral life cycles is necessary for the development of new therapeutic strategies 1 . Viperin, a member of the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes, is an interferon-inducible protein implicated in the inhibition of replication of a broad range of RNA and DNA viruses, including dengue virus, West Nile virus, hepatitis C virus, influenza A virus, rabies virus 2 and HIV3,4. Viperin has been suggested to elicit these broad antiviral activities through interactions with a large number of functionally unrelated host and viral proteins3,4. Here we demonstrate that viperin catalyses the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously undescribed biologically relevant molecule, via a SAM-dependent radical mechanism. We show that mammalian cells expressing viperin and macrophages stimulated with IFNα produce substantial quantities of ddhCTP. We also establish that ddhCTP acts as a chain terminator for the RNA-dependent RNA polymerases from multiple members of the Flavivirus genus, and show that ddhCTP directly inhibits replication of Zika virus in vivo. These findings suggest a partially unifying mechanism for the broad antiviral effects of viperin that is based on the intrinsic enzymatic properties of the protein and involves the generation of a naturally occurring replication-chain terminator encoded by mammalian genomes.


Assuntos
Antivirais/metabolismo , Citidina Trifosfato/metabolismo , Genoma Humano/genética , Proteínas/genética , Proteínas/metabolismo , Terminação da Transcrição Genética , Animais , Antivirais/química , Chlorocebus aethiops , Citidina Trifosfato/biossíntese , Citidina Trifosfato/química , Células HEK293 , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleotídeos , Especificidade por Substrato , Células Vero , Zika virus/enzimologia , Zika virus/metabolismo
6.
Science ; 359(6382): 1411-1416, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29567715

RESUMO

Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.


Assuntos
Cobre/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/biossíntese , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Genoma Bacteriano , Imidazóis/química , Imidazóis/metabolismo , Ligantes , Methylosinus trichosporium/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oxirredução , Oxigênio/metabolismo , Conformação Proteica em alfa-Hélice , Multimerização Proteica
7.
Biochemistry ; 57(8): 1306-1315, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29405700

RESUMO

The Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies. X-ray crystallography allows us to identify the ligands to each of the two auxiliary clusters at the C-terminal region of the protein. The auxiliary cluster nearest the RS site (AuxI) is in the form of a 2Fe-2S cluster ligated by four cysteines, an Fe-S center not seen previously in other SPASM domain proteins; this assignment is further supported by Mössbauer and EPR spectroscopies. The second, more remote cluster (AuxII) is a 4Fe-4S center that is ligated by three cysteine residues and one aspartate residue. In addition, we examined the roles these ligands play in catalysis by the RS and AuxII clusters using site-directed mutagenesis coupled with EPR spectroscopy. Lastly, we discuss the possible functional consequences that these unique AuxI and AuxII clusters may have in catalysis for PqqE and how these may extend to additional RS enzymes catalyzing the post-translational modification of ribosomally encoded peptides.


Assuntos
Proteínas de Bactérias/química , Endopeptidases/química , Proteínas Ferro-Enxofre/química , Methylobacterium extorquens/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Proteica , Temperatura
8.
J Struct Funct Genomics ; 14(2): 31-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23535894

RESUMO

Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin ß2 or Kapß2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapß2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapß2 is conserved throughout eukaryotes. Kap104, the Kapß2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapß2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapß2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapß2·PY-NLS structures.


Assuntos
Sinais de Localização Nuclear/química , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/química , Sequência de Aminoácidos , Sítios de Ligação , Núcleo Celular/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...